2017年8月24日の第55回UBI研究会において,秋田 浩也(M2)の1名が以下のタイトルで発表を行いました.
・宅内行動推定の精度向上を目指したデータ分析に関する一検討(秋田 浩也)

20170824akita

Abstruct:
近年 IoT の流れを受けて,宅内データの収集と分析が盛んに行われている.しかし,正確なデータ を収集するためには,高価なデバイスが必要になる.今後一般に普及することを考え,導入の容易性に着 目した宅内環境を想定し,被験者実験を実施した.被験者実験で収集したデータに対して,行動推定とい う課題を与え,データ分析を行う.その際に、機械学習や隠れマルコフモデルなどの手法を適用し,精度 向上にどう影響するのかを考察する.機械学習は SVM,Random Forest ともに高い精度で行動を推定で きた.また、主成分分析により次元を削減してもある程度の精度が維持可能であることも分かった.時系 列データの処理として GMM-HMM を適用したが,本実験環境では機械学習の手法に優位性があるという 結果となった.実験を通して単一の特徴ベクトルに依存しているわけではないが,重要な特徴が存在する ことがわかった.